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Abstract

This paper is concerned with a novel optimization algorithm that implements an enhanced formulation of simulated
annealing (SA). The new algorithm is denoted as ISA (improved simulated annealing) in the rest of the paper. ISA
includes a two-level random search: ‘‘global annealing’’ where all design variables are perturbed simultaneously and
‘‘local annealing’’ where design variables are perturbed one at a time.

The improvement with respect to classical SA is in the fact that trial designs are generated always taking care to
choose directions along which the cost function may improve. To this purpose, cost function sensitivities are computed
in order to properly choose the size of each random perturbation. In addition, the optimization problem is linearized
about the current design point if the optimizer ends up in an infeasible region or there is no significant reduction in cost
even though the cost function gradient is not close to zero. The linearization is controlled by a trust region model. The
optimization algorithm continuously shifts from global to local annealing based on the current best record at the begin-
ning of each cooling cycle. Finally, the cooling schedule is automatically adjusted within ISA based on the convergence
behavior.

In this work, the ISA algorithm is successfully utilized to solve complicated optimization problems which exhibit
non-smooth/non-convex behavior: (i) the large-scale (200 design variables and 3500 constraints) weight minimization
of a 200bar truss under five independent loading conditions; (ii) the configuration optimization of a cantilevered bar
truss with 45 elements and 81 design variables; (iii) an example of reverse engineering where in-plane elastic properties
of an eight-ply woven composite laminate are to be determined.

The performance of ISA is compared to that of classical SA, gradient based optimization codes recently published in
literature and commercial software. The results obtained in this study indicate that ISA is a very efficient optimization
code. In fact, ISA was much faster than classical SA. The present code allowed about 300kg weight saving in the
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200bar truss case and about 80kg in the cantilevered bar truss case. In addition, the residual error on elastic constants
in the material identification problem was less than 3%.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Engineering optimization problems have often to deal with non-smooth and/or non-convex design
spaces. Consequently, many optimization methods may become not attractive since they get stuck in local
optima or are computationally very expensive. In general, gradient based optimizers (GBOs) are capable to
reach an optimum design rather quickly but there is no guarantee on that the attained design will really be
the true global optimum. On the other hand, non-gradient based optimizers (NGBOs) allow us to perform
the optimum search in a zone of design space significantly larger than in the GBO case but at a computa-
tional cost that is often unaffordable. Hence, a reasonable compromise is to use an optimization algorithm,
which explores large fractions of design space but uses also gradient information in order to speed up the
design process.

Amongst global optimization techniques, simulated annealing (SA) is perhaps the method with the widest
variety of applications in problems taken from different disciplines. The reader can refer to the recent re-
views included in the works of Yu Chen and Su (2002) and Hasancebi and Erbatur (2002). As is quoted
in Rao (1996), simulated annealing is a stochastic technique to find a global minimizer for non-linear opti-
mization problems. The basic idea of the method is to generate randomly a trial point and evaluate the
problem functions. If the trial point is infeasible, it is rejected and a new trial point is evaluated. If the trial
point is feasible and the cost function is smaller than the current best record, then the point is accepted and
the best record is updated. If the trial point is feasible but the cost function is higher than the best value,
then the point is accepted or rejected based on a probabilistic criterion, which estimates if design may im-
prove in the next function evaluations. In order to compute probability, a parameter called the temperature

is utilized. In the optimization problem, temperature can be a target value (estimated) for the cost function
corresponding to a global minimizer. Initially, a larger target value is selected. As the trials progress, the
target value is reduced based on a cooling schedule. The acceptance probability steadily decreases to zero
as the temperature is reduced.

Researchers proposed many different schemes for generating randomly the trial points. A comprehensive
review of those strategies can be found in Blachut (2003). In general, any random generation mechanisms
used in simulated annealing may be classified in two main groups: the 1-directional search where the design
variables are perturbed one at a time and the multi-directional search where all design variables are per-
turbed simultaneously. The latter approach allows to increase the convergence speed but may fail in finding
the global optimum. On the other hand, the former approach may result in too large computational times.
For this reason, the present authors carried out a trade study on two non-convex optimization problems
(Banana function with 50 design variables and weight minimization of a 10bar truss) in order to choose
a random generation mechanism which ensured enough robustness of the SA optimizer and a reasonable
convergence speed. It was found that 1-directional search was superior over multi-directional search. More
details on the comparison of different annealing schemes are given in Appendix A. Indeed, the trade study
finally served to write an optimization code—based on ‘‘classical’’ simulated annealing—robust enough to
be used as comparison basis with a new SA algorithm developed in this research.

It is apparent that the main deficiencies of classical SA are the large number of trials which result in just
marginal improvements in design and the fact that infeasible designs are rejected with obvious waste of
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computational resources. The latter fact is a serious drawback in optimization problems where each gen-
eration of a new trial design involves finite element analysis. In order to overcome these limitations, the
present authors developed a new optimization algorithm based on an improved formulation of simulated
annealing. The new algorithm is denoted as ISA (improved simulated annealing) in the rest of this paper.

The ISA algorithm combines the global optimization capability of SA with the search for feasible direc-
tions. ISA includes a two-level random search: ‘‘global annealing’’ where all design variables are perturbed
simultaneously and ‘‘local annealing’’ where design variables are perturbed one at a time. The optimization
algorithm presented here continuously shifts from global to local annealing based on the nominal design at
the beginning of each cooling cycle. Local annealing requires constraint linearization. The accuracy of
approximation is controlled by a trust region model. Since local annealing is performed only if global
annealing fails, constraint gradients are evaluated not at each cooling cycle. Therefore, the ISA optimizer
is basically a SA algorithm with infrequent gradient calculation. The mean features of ISA can be summa-
rized as follows.

If the design at the beginning of a cooling cycle is feasible, a new trial design point PTR is defined by
perturbing all the optimization variables simultaneously. Each new trial point PTR defines a new trial search
direction STR whose components are the perturbations given to each design variable. The STR direction is
chosen so that it is always a descent direction. This is done because the total change in cost is the sum over
changes in cost when design variables are changed one at a time. As is clear, this strategy serves to reduce
the number of trial designs generated in the optimization process.

If the optimizer enters in an infeasible region, the design is perturbed by taking movements along direc-
tions where the constraint violation may be reduced. In order to steer the design back to a feasible domain,
constraint functions are linearized and trial designs are evaluated in the approximate model. The trial de-
sign which violates linearized constraints the least is taken as the starting point for a new search. This strat-
egy serves to reduce the computational cost of optimization when trial points are infeasible. The reliability
and accuracy of the approximate model are ensured by a trust region model.

Moreover, ISA activates improvement routines based on a quadratic approximation of cost function
and constraints when a trial point is better than the current best record but violates the constraints of
the optimization problem. Finally, the cooling schedule is adaptively changed by ISA during the optimiza-
tion process based on the improvement in design obtained in the current annealing cycle.

In order to check on the performance of the ISA algorithm, complicated optimization problems have
been solved in this study. The first test case is the weight minimization of a 200bar truss under five inde-
pendent loading conditions. This large-scale problem (200 design variables and 3500 constraints) is such
that GBOs could not find designs consistent with the amount of design freedom included in the optimiza-
tion process (see the work of Lamberti and Pappalettere, 2003a). The second test case is the configuration
optimization of a cantilevered bar truss with 45 members and 81 design variables. The complication is in the
fact that the optimization variables belong to two well distinct design spaces: size and configuration.

The last test case is a typical example of reverse engineering. The in-plane elastic properties of an eight-
ply composite laminate (woven fiberglass-epoxy) used as substrate for printed circuit boards are to be
determined. To this purpose, the reverse engineering problem of in-plane material characterization is trans-
formed into an optimization problem where the goal is to minimize the difference W between the displace-
ments computed by means of finite element analyses and the displacements measured experimentally by
means of a powerful non-contact optical technique known as phase shifting electronic speckle pattern inter-

ferometry (PS-ESPI) (Cloud, 1998; Creath, 1985). Although this problem includes only four design varia-
bles and there are no severe constraints, the optimization process is complicated by the fact that the cost
function is highly non-linear and the sensitivity values may even be significantly different when design
variables are smaller or greater than their optimum value.

The relative merits of the ISA algorithm, state-of-art GBOs recently published in literature, classical SA
and commercial software have been compared. Results indicate that ISA proved itself to be very efficient.
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In fact, the present code allowed to save about 300kg in the 200bar truss case with respect to the best solu-
tion quoted in literature (i.e., the LESLP algorithm described in Lamberti and Pappalettere, 2003a). In
addition, ISA improved the design of the cantilevered bar truss by about 80kg. Finally, the residual error
on the in-plane displacement field found in the material identification problem was less than 3%.

The present paper is divided in five sections and an appendix. After the Introduction section, we describe
the different steps of the ISA optimization algorithm in Section 2. Section 3 presents the two test cases; the
section includes also a summary of the PS-ESPI optical technique and the description of the experimental
set-up used in the material identification procedure. Section 4 analyzes the results obtained in the optimi-
zation runs and discusses the relative merits of ISA and the other optimization codes considered in this
study. Finally, Section 5 summarizes the work presented in this paper and reports the main findings of
the study. The appendix discusses the relative merits of classical annealing schemes.
2. The ISA algorithm

A non-linear optimization problem may be formulated as follows:
minW ðx1; x2; . . . ; xN Þ;
Gkðx1; x2; . . . ; xN Þ 6 0;

xlj 6 xj 6 xuj ;

8><
>:

j ¼ 1; . . . ;N ;

k ¼ 1; . . . ;NC;

�
ð1Þ
where

• (x1,x2, . . .,xN) are the N design variables;
• W(x1,x2, . . .,xN) is the objective function;
• Gk(x1,x2, . . .,xN) are the NC inequality constraint functions;
• xlj and xuj are the lower and upper bounds of the jth design variable.

The pseudo code of the ISA algorithm is now provided. Each step is described in detail in order to make
potential users able to code the ISA algorithm on computers. The flow chart of ISA is shown in Fig. 1.

1. Start the optimization process. Choose the initial design vector X0(x1,0,x2,0, . . .,xN,0) and set it as the
current best record XOPT. Define the corresponding point POPT in the design space.

In general, the initial design X0 should be feasible and pretty far away from constraint domain bound-
aries in order to explore a zone of design space approximately centered about X0 with no risk to generate
infeasible points that might bias the optimum design search since the very beginning of the optimization
process. This strategy serves also to reduce the number of constraint evaluations eventually done in the
infeasible region when design variables are perturbed one by one.

Set the K counter of cooling cycles as K = 1 and choose the limit number of cooling cycles as
KLIM = 100.

Set the IGLOB counter of the global annealing cycles eventually performed by ISA in a cooling cycle
as IGLOB = 0. Set the ISEC counter of the inner loops eventually performed by ISA in a cooling cycle as
ISEC = 0. Choose the limit number of global annealing cycles and inner loops as ILIM = 5. The reason
why the number of global annealing cycles is taken equal to the number of inner loops in each cooling cycle
is the following. Each global annealing cycle requires N function evaluations in order to compute gradients.
Hence, ISA will require NFV = ILIM · N function evaluations in one cooling cycle if local annealing is
never used. However, such value of NFV is also the number of function evaluations required by classical
implementations of simulated annealing in order to complete ILIM secondary cycles (i.e., inner loops). Since



Fig. 1. Flow chart of the ISA algorithm.
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the task of calculating gradients is less expensive than completing a single inner loop, to limit global anneal-
ing cycles to ILIM is a rather conservative strategy in terms of CPU time.
2. If the optimization problem is constrained and the starting design is feasible, set the initial temperature

T0 as about 10% of the initial cost. If there are ‘‘soft’’ non-linear constraints or the optimization prob-
lem is unconstrained, use a very large value of T0. The two strategies are practically equivalent because
the cost of a ‘‘very feasible’’ initial design (i.e., located very far away from the constraint domain
boundaries) is usually much more than 10 times as large as the final optimum cost.

If the starting point violates constraints, set the initial temperature T0 as 10 times the cost corresponding
to the first feasible trial design PFEA,1 generated by ISA. The rationale behind this strategy is the following.
In order to steer the design back to a feasible region, ISA perturbs the nominal design by taking movements
along a series of directions whose components depend from the constraint gradients (see Step 7). If some of
these directions are not descent, the cost WFEA,1 computed at the PFEA,1 point will be larger than the cost
W0 computed at the starting point. In such a case, ISA will try to reduce WFEA,1 in order to minimize the
cost functionW(X). If the PFEA,1 point is pretty far away from the constraint domain boundary, theWFEA,1

cost will be much higher than the final optimum cost and hence ISA will easily reduce W(X) by performing
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global annealing cycles (see Step 4). Conversely, if the PFEA,1 point is close to constraint boundaries, the
WFEA,1 may be comparable to the minimum cost. Hence, ISA will have to evaluate an acceptance/rejection
probability function in order not to get stuck in local minima. Since this is done in the very early stages of
the optimization process, the temperature T0 should be high enough to ensure exploration of a sufficiently
large zone of the design space.
3. Evaluate non-linear constraints at the current best record XOPT. If constraints are satisfied execute

Step 4. Conversely, if constraints are violated execute Step 7.
4. Global annealing. All design variables are perturbed simultaneously.

Set IGLOB = IGLOB + 1. Evaluate the gradient rW ðXOPTÞ of the cost function W(X) at the POPT point.
Perturb randomly each design variable xj (j = 1, . . .,N) so that (oW/oxj) Dxj < 0. Each movement Dxj is cal-
culated as follows:
oW =oxj > 0 ) Dxj ¼ �ðxOPT;j � xljÞ � NRND;j � cK � ð1þ ljÞ;
oW =oxj < 0 ) Dxj ¼ ðxuj � xOPT;jÞ � NRND;j � cK � ð1þ ljÞ;

ðj ¼ 1; . . . ;NÞ; ð2Þ
where each weighting coefficient lj is defined as joW =oxjj=krW ðXOPTÞk. The purpose of lj is to adjust the
Dxj movement based on the contribution that the jth sensitivity gives to the magnitude of cost function gra-
dient. Design variables are changed following their order sequentially.

Define the descent direction STR(Dx1,Dx2, . . .,DxN) and the corresponding trial point of the design space
PTR(xOPT,1 + Dx1,xOPT,2 + Dx2, . . .,xOPT,N + DxN). Let XTR(xTR,1,xTR,2, . . .,xTR,N) be the trial design vec-
tor containing the co-ordinates (i.e., the design variables) of the PTR point. Hence, the design variables are
‘‘temporary’’ updated as follows:
xTR;j ¼ xOPT;j þ Dxj ðj ¼ 1; . . . ;NÞ: ð3Þ

The NRND,j parameter in expression (2) is a random number chosen in the interval (0,1). The cK factor is
computed as follows:
cK ¼ max T K=T 0; aK ¼ maxð0:01; 0:2 � ð0:9ÞK�1Þ
h i

; ð4Þ
where the aK parameter is a knockdown factor introduced by Huang and Arora (1997) in order to keep all
the optimization variables inside the range defined by their lower and upper bounds. If it happens that
xTR;j < xlj or xTR;j > xuj , the Dxj movement in expression (3) is reset to Dxj = Dxj/(1 + lj).

The cK factor is initially equal to 1 and is shrunk as the optimization progresses.
5. Evaluate cost function and constraints at the trial point PTR generated in Step 4. Let WTR denote the

corresponding value of the cost function. Calculate DWTR =WTR � WOPT. Based on the DWTR value
and on whether constraints are satisfied or not, different scenarios may occur.
5A. If it holds DWTR < 0 and the PTR point is feasible, accept the design XTR as the new optimum.

Hence, set XOPT � XTR and WOPT = WTR. If IGLOB < ILIM, go to Step 4. Otherwise, if IGLOB =
ILIM, go to Step 9.

5B. If it holds DWTR < 0 and the PTR point is infeasible, ISA builds a linear approximation of the
optimization problem about the current best record POPT. The intersection point ITR between
the STR direction and the linearized constraint domain boundary is found. Non-linear constraints
are evaluated at ITR. Quadratic approximations of the cost function and NCact active constraints
are built by interpolating the responses gathered at POPT, PTR and ITR. Therefore, no second
order sensitivities are needed. Once the quadratic model is set, ISA solves a set of NCact quadratic
equations in order to find the steps Dsk for which the constraint violation vanishes in the approx-
imate model. The quadratic equations derive from the equalities Gk

quadðDsjÞ ¼ 0 (k = 1, . . .,
NCact). The smallest step amongst the Dsj steps is taken as the trial step DsTR. The trial step DsTR
serves to define the new trial design point FTR on the STR direction at which the real cost function
W is evaluated.
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If the cost function improves (WTR < WOPT), ISA evaluates non-linear constraints at FTR. If FTR is fea-
sible, accept it as the new current best record. Hence, execute Step 4 or Step 9 if it holds IGLOB < ILIM or
IGLOB = ILIM, respectively.

Conversely, if the improvement routine fails (WTR >WOPT), execute Step 6.
5C. If it holds DWTR > 0, linearize constraints about POPT in order to search the optimum design in a

zone limited by the current best record and the constrain domain boundary.
• If the PTR point is feasible, define a new trial point PTR,NEW as the symmetric of the old PTR

point about the POPT point. Evaluate the cost function at the PTR,NEW point.
– If the new increment DWTR =WTR,NEW � WOPT turns negative, evaluate non-linear con-

straints at PTR,NEW. If the new trial point PTR,NEW is feasible, accept it as the new current
best record and execute Step 4. Conversely, if PTR,NEW is infeasible, go to Step 5B.

– If the new DWTR increment is yet greater than 0, execute Step 6.

• If the PTR point is infeasible, find the intersection point ITR between the STR direction and the

linearized constraint domain boundary. Redefine the trial point PTR as the symmetric of the ITR
point about the POPT point. Evaluate the cost function W at the PTR point.
– If the new DWTR increment turns negative, evaluate non-linear constraints. If the new trial

point PTR is feasible, accept it as the new current best record and execute Step 4. If the
new trial point PTR is still infeasible, go to Step 5B.

– If the new DWTR increment is yet greater than 0, execute Step 6.

As is clear, ISA attempts in Step 5C to perturb the nominal design by moving along a descent direction

which pushes the optimizer away from the constraint domain boundary where there may be local minima.
6. Local annealing. Design variables are perturbed one at a time.

Set ISEC = ISEC + 1. Perturb the design variables one by one in order to move away from constraint
boundaries and to escape from local minima. Use linearized constraints in order to reduce the number
of exact analyses and to save computational time. No re-linearization is required here since Step 6 is exe-
cuted only if global annealing (i.e., all the optimization variables are perturbed simultaneously) failed in
Steps 5A–C where ISA builds the linearized sub-problem about the current best record POPT.

For each design variable, generate another random number qj in the interval (0,1),
qj > 0:5 ) xTR;j ¼ xOPT;j þ ðxuj � xljÞ � qj � cK ;
qj < 0:5 ) xTR;j ¼ xOPT;j � ðxuj � xljÞ � qj � cK ;

ð5Þ
where cK is again computed with expression (4). As it is done in Step 4, design variables are changed fol-
lowing their order sequentially.

As one can see, cost function sensitivities are not used in expression (5) for defining the new trial values
xTR,j. The reason for this strategy is that computing the gradient of cost function is useless. In fact, the
ISA algorithm executes a local annealing search each time the movements taken along the descent direc-
tions STR in a global annealing cycle lead to violate constraints or push ISA towards non-convex
regions of the design space. In such cases, ISA will recover the constraint violation eventually at the cost
of some penalty in weight or it will get back to a convex region of the design space. The former fact actually
implies ST

TRrW ðXOPTÞ > 0. In the latter case, linear approximation may be not effective in non-convex
regions.

Now, let us denote as PTR,j each new trial design generated. Let Xj(xOPT,1,xOPT,2, . . .,xTR,j, . . .,xOPT,N) be
the corresponding design vector. Compute cost function W(Xj) at each PTR,j. Compute the change in cost
function DWj =W(Xj) � WOPT.

An Xj design is immediately rejected if violates linearized constraints. This strategy is justified by the
informal argument that if linearized constraints are violated, non-linear constraints also will be very likely
to be violated.
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If it occurs DWj < 0 and the linearized constraints are satisfied, store the Xj vector and the Wj cost in the
P1 database of ‘‘temporary’’ best records. The notation ‘‘temporary’’ indicates that each Xj might violate
the non-linear constraints. In fact, as the Wj cost decreases, the corresponding Xj design may get too close
to the boundary of linearized constraint domain and finally end up infeasible. For this reason, ISA chooses
from the P1 database the two designs Xj,SMALL and Xj,LARGE that correspond to the smallest and the larg-
est jDWjj changes, respectively. Then, ISA evaluates the non-linear constraints at those two points. If the
Xj,LARGE design is feasible, ISA takes it as the new best record. Conversely, the Xj,SMALL design is taken as
the new best record.

If it occurs DWj > 0 and the linearized constraints are satisfied, define Metropolis� probability function in
the following way:
P ðDW jÞ ¼ exp
�DW jPNDW

r¼1 DW r=NDW
	 


� T K

8<
:

9=
;: ð6Þ
The NDW parameter in expression (6) represents the number of trial points at which the cost function re-
sulted larger than the current best records throughout the optimization process. The increases in cost are
expressed by the DWr terms. The

P
r¼1;NDWDW r=NDW ratio accounts for the general formation of all the

previous candidate designs and serves to normalize the probability function with respect to the change in
cost function.

Each design Xj is provisionally accepted or certainly rejected based on the Metropolis� criterion:
P ðDW jÞ > minðNRDj; qjÞ ) provisionally accepted;

P ðDW jÞ < minðNRDj; qjÞ ) certainly rejected:
ð7Þ
The Xj designs provisionally accepted are included in the P2 database. If there are no trial designs that yield
reductions in cost, ISA extracts from the P2 database the design XBEST

j for which the cost function value is
the least and sets this as the current best record. In simple words, ISA minimizes the increase in cost if the
local annealing could not improve design.

It should be noted that ISA compares design acceptance probability to two random numbers and not
just to one random number as, instead, is done in classical SA. The present strategy is certainly conservative
since ISA shifts from global annealing to local annealing when the former search mechanism fails.

Once Step 6 is completed, go to Step 8.
7. Search for a feasible design or for a design which violates constraints the least.

Set IGLOB = IGLOB + 1. This step is executed if the optimization process or a cooling cycle begins from
an infeasible design point. The infeasible starting design is yet denoted as XOPT following the notation used
in Step 3. The rationale behind this step is that ISA tries to change the current design by moving along
directions where the cost function improves and the constraints get less violated than at the cooling cycle
starting point.
• Define the gradient vector of each of the NCV violated constraints. That is, define NCV directions in

fashion of dG,V = �$GV(XOPT).
• If it holds dT

G;VrW ðXOPTÞ < 0, solve the linear system formed by the dG,V directions and the linearized
constraints GLIN,V that are violated. Find hence the steps DGLIN,V.

• Solve the linear system formed by the dG,V directions and the linearized constraints that are satisfied.
Find hence the steps DGINIT,V.

• Include the DGLIN,V and GINIT,V steps as components of the SVIOL direction. Combine the DGLIN,V

and DGINIT,V steps in order to define the DGVIOL step along the SVIOL direction. As is clear, the SVIOL

vector is a direction is a vector where each component reduces the constraint violation for one or
more constraints. In addition some of the SVIOL components are such that the double goal of reducing
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constraint violation and reducing cost function is achieved. If it holds ST
VIOLrW ðXOPTÞ < 0, the effect

of cost function reduction is larger than the effect of constraint violation. Conversely, the optimizer
has to pay some weight penalty in order to get in a feasible zone of the design space.

• Reduce the DGVIOL step to GFIN,VIOL by means of a trust region model along the SVIOL direction. Let
GFIN,VIOL be the corresponding point of the design space. That is,
min
k¼1;...;NCV

GkðXOPTÞ � GkðXOPT þ dXVIOLÞ
dXT

VIOLrGkðXOPTÞ

" #
P 0:75; ð8Þ
where kdXVIOLkis the unknown step size along SVIOL determined by solving the non-linear equation (8).
The 0.75 value in the RHS of expression (8) is derived from classical implementation of trust region models
(see, for instance, Wujek and Renaud, 1998).
• If GFIN,VIOL satisfies the linearized constraints set it as the new trial point PTR. If non-linear con-

straints are satisfied at PTR, choose PTR as the current best record and execute from Step 3 onward.
• If GFIN,VIOL violates the linearized constraints, re-linearize constraints about GFIN,VIOL. Rename the

GFIN,VIOL point as the new trial point PTR. Repeat this step until some new GFIN,VIOL point satisfying
linearized constraints is found.
The rationale behind the strategy described above is the following. Classical SA deals with violated con-
straints by generating new random designs until constraints are satisfied. However, such a strategy may re-
sult in increasing the cost function too much. From the stand point of the number of required exact
analyses, the strategy implemented in ISA performs N function evaluations in order to find the gradients
of non-linear functions. Although classical simulated annealing also requires up to N exact analyses in each
inner loop (one local annealing cycle in ISA or the same as a ‘‘secondary cooling cycle’’ in classical SA), it
does not provide the designer with any information on the direction along which the constraint violation
reduces the most, on which variables govern the constraint violation reduction rate, and on the relationship
between the amount of constraint violation and reduction in cost function.
8. If it occurs ISEC = ILIM, go to Step 9. Conversely, set ISEC = ISEC + 1 and repeat from Step 3 onward.
It is to be noticed that ISA may execute less than ILIM local annealing cycles in a cooling cycle (in fact,

ISA tries to perform global annealing each time a local annealing cycle improves the previous best record)
while in classical SA the optimizer is forced to perform all the ILIM secondary cooling cycles included in a
primary cooling cycle. This fact contributes to reducing significantly the CPU time required in the optimi-
zation process.
9. If K > 3 check for convergence according to the following criterion (9):
max max
jW OPT;K � W OPT;K�1j

W OPT;K
;
jW OPT;K�1 � W OPT;K�2j

W OPT;K�1

;
jW OPT;K�2 � W OPT;K�3j

W OPT;K�2

� �
;

�

Max
kXOPT;K � XOPT;K�1k

kXOPT;Kk
;
kXOPT;K�1 � XOPT;K�2k

kXOPT;K�1k
;
kXOPT;K�2 � XOPT;K�3k

kXOPT;K�2k

� ��
6 eCONV; ð9Þ
where WOPT,K and XOPT,K, respectively, denote the best record and the corresponding design vector found
in the Kth cooling cycle.

The eCONV parameter is set to 10�5 in order to avoid premature convergence if the last four cooling cy-
cles resulted in marginal improvements in design.

If the convergence criterion (9) is satisfied go to Step 11.
10. If K < 3 or the convergence criterion (9) is not satisfied:
• Reset K as K = K + 1;
• Reset ISEC as ISEC = 0 and IGLOB as IGLOB = 0;



212 K. Genovese et al. / International Journal of Solids and Structures 42 (2005) 203–237
• Reduce temperature TK in fashion of TK = bKTK�1 where the parameter bK is chosen as:
bK ¼ max
0:95

1þ NREJE

NTRIA

	 
 ; 1� W FIN;K�1

W INIT;K�1

� �2
4

3
5: ð10Þ
The WFIN,K�1 and WINIT,K�1 terms respectively indicate the cost function values at the beginning and at
the end of the current annealing cycle. NREJE is the number of trial designs rejected by ISA out of the total
number of trial designs NTRIA generated in the current cooling cycle. The NREJE number includes each trial
point which does not yield immediate improvement in design. For instance, if ILIM = 5 global annealing
cycles are performed within the current cooling cycle and ISA executes Step 5B in each global annealing
cycle (that is, there are five infeasible trial points at which the cost function decreases), it yields NREJE = 5
and NTRIA = ILIM + NREJE = 10.

In general, it is suggested in literature to use a constant temperature reduction factor chosen ranging be-
tween 0.9 and 0.99. However, unlike many referenced SA algorithms (see, for instance, Rao, 1996; Huang
and Arora, 1997; Yu Chen and Su, 2002), ISA utilizes a variable temperature reduction factor that accounts
for two effects: the percentage of trial points that immediately yield improvements in design and the trend of
the cost function. The former effect is captured by a term whose upper limit is the 0.95 value that is about the
average between 0.9 and 0.99; this upper limit is eventually reduced by means of a knockdown factor kK de-
fined as the inverse of (1 + NREJE/NTRIA): the kK factor is obviously equal to 1 ifNREJE = 0. The effect of cost
function is captured in (10) by computing the relative change in cost attained in the current cooling cycle.

The rationale behind expression (10) is the following. If the cost function decreased much in the current
cooling cycle, the temperature can be kept high since the optimizer is still exploring a zone where the cost
function gradient is negative. Hence, new descent directions can be found easily and the risk to reject can-
didate designs is very low. In simple words, the criterion (10) is driven by the (1 �WFIN,K�1/WINIT,K�1)
term. For instance, if Step 5B is executed one time within each global annealing cycle (NREJE = 5;
NTRIA = 10), one gets 0.633 for the 0.95kK product. This implies that a decrease in cost function larger than
63.4% (very likely to occur in the early cooling cycles if the initial design is far enough from the constraint
domain boundaries) makes the (1 � WFIN,K�1/WINIT,K�1) term predominant over the 0.95kK product.

Conversely, if the cost function improved marginally or even increased, the optimizer entered in a zone
where there are few descent directions or a descent direction cannot even be defined. Hence, the tempera-
ture should be reduced in order to reject many trial points because they certainly will not yield significant
improvements in design. In simple words, since the (1 �WFIN,K�1/WINIT,K�1) term may get close to zero,
the criterion (10) is driven by the 0.95kK product: the larger the number of trial designs rejected in the cur-
rent design cycle, the higher will be the reduction in temperature. This strategy is not too conservative. In
fact, assuming that the 30% of total trials were rejected (that is, a very high rejection rate), one gets a value
of about 0.75 for the 0.95kK product.
• Repeat from Step 3 onward.
11. End the optimization process.
3. Test cases

From the description of ISA contained in the previous section, it could seem that the present algorithm
will be able to solve only optimization problems where explicit gradient information are available. This may
appear as a limitation with respect to classical simulated annealing which is generally considered a versatile
optimization tool since it does not involve gradient computation and hence does not include the explicit
formulation of the optimization problem as a pre-requisite. However, the present authors point out that
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ISA performance is either insensitive to how the optimization problem is formulated and how the gradients
are determined. In order to prove this statement, we chose a set of four optimization problems where not all
of the gradients can be determined explicitly since their computation involves finite element analysis.

The test cases used for testing the computational efficiency of the ISA algorithm are now described.

3.1. Weight minimization of bar truss structures

The weight minimization problem for a bar truss structure comprised of NOD nodes and NEL elements
may be formulated as follows:
minW ¼ qg
PNEL

j¼1

ljxj;

ulðx;y;zÞ;k 6 uðx;y;zÞ;k;ilc 6 uuðx;y;zÞ;k;

rl
j 6 rj;ilc 6 ru

j ;

xli 6 xi 6 xui ;

8>>>>>><
>>>>>>:

i ¼ 1; . . . ;N ;

j ¼ 1;NEL;

k ¼ 1;NOD;

ilc ¼ 1;NLC;

8>>><
>>>:

ð11Þ
where
• xj is the cross sectional area of the jth element of the structure included as sizing variable in the opti-

mization process.
• xj is the length of the jth element of the structure.
• g is the gravity acceleration value (9.81m/s2); q is the material density.
• NLC the number of independent loading conditions acting on the structure.
• u(x,y,z),k,ilc are the displacements of kth node in the directions x, y, z, with the lower and upper bounds

ulðx;y;zÞ;k and uuðx;y;zÞ;k.
• rj,ilc is the stress on the jth element, with the lower and upper bounds rl

j (compressive) and ru
j (tensile).

• The ilc subscript indicates that displacement and stress constraints are relative to the ilc-th loading
condition. The constraints on stresses and displacements are put in a dimensionless form.

The planar 200bar truss structure shown in Fig. 2 is to be designed under five independent loading con-
ditions and with constraints on nodal displacements and member stresses. The structure has 77 nodes. The
optimization includes 200 design variables (cross sectional area of truss members) and 3500 non-linear con-
straints. The Young modulus of the material is 2.069 · 1011N/m2 while the density is 7833.413kg/m3. The
lower bound of the cross sectional area is set to 0.1 in.2 (0.00064516m2). The displacements of the free nodes
must be less than 0.5 in. (0.0127m). The allowable stress (the same in tension and compression) is set to
30,000psi (21.092kgf/mm2). The optimization was carried out also with the more severe stress limit of
10,000psi (7.031kgf/mm2). More details on geometry and loading conditions are given in the work of Ven-
kayya (1978).

Lamberti and Pappalettere (2003a) considered different variable linkages for the structure in Fig. 2 and
carried out optimization runs including 96, 105 and 200 design variables. Their optimization algorithm—
LESLP, where the acronym stands for Linearization Error Sequential Linear Programming—implemented
a sophisticated formulation of Sequential Linear Programming where the move limit domain included as
many candidate designs as possible. Results indicated that LESLP was superior over other referenced opti-
mization algorithms and commercial software. However, the designs optimized with LESLP and the other
codes were not consistent with the amount of design freedom included in the optimization. In particular,
the structure optimized with 200 design variables was about 230kg heavier than its counterpart optimized
with only 96 design variables. It was seen that the stress constraints were not active in the 200 design
variable case (about 30% of the 30,000psi allowable limit) while they were active in the 96 design variable
case. This occurred probably because the design space includes a zone where there is a sharp change in



Fig. 2. Schematic of the planar 200bar truss structure.
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stress value if the design is perturbed so to keep displacement constraints active. The very large stress gra-
dients resulted in very tight move limits and hence limited the zone where the optimum is searched. In order
to overcome this problem, the planar structure was re-optimized here with the ISA algorithm including 200
design variables. Interestingly, since the cost function of the truss problem is linear, the rW gradient vector
required in the ISA global annealing cycles can be immediately determined and does not change through
the entire optimization process.

The sizing optimization problem (11) may become a configuration optimization problem if the co-
ordinates of structure nodes are also included as optimization variables. Let xj1,2, yj1,2, zj1,2 be the
co-ordinates of the nodes limiting the generic ith element of the structure. It follows:
minW ¼ qg
XNEL

j¼1

xj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxj1 � xj2Þ2 þ ðyj1 � yj2Þ

2 þ ðzj1 � zj2Þ2
q

: ð12Þ



Fig. 3. Schematic of the cantilevered bar truss structure.
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In the third test case of this study, the cantilevered truss structure shown in Fig. 3 is to be designed with
constraints on nodal displacements, member stresses and critical buckling loads. The structure has 45 ele-
ments and 20 nodes. It is built by nine repeating modules each of which contains five elements. In addition,
the nodal co-ordinates of the eighteen free nodes are taken as configuration variables. Therefore, 81 design
variables are considered. Vertical forces are applied to the structure: respectively, 150,000 lbf
(68,038.856kgf) at nodes 9 and 10 acting downward, and 50,000 lbf (22,679.619kgf) at nodes 11 and 12 act-
ing upward. The lower bound of the cross sectional areas is 0.1 in.2. The allowable tensile stress is 25,000psi
(17.577kgf/mm2), the stress limit in compression accounts also for buckling loads (see Dhingra and Lee,
1994). The displacements of the free nodes must be less than 2 in. (0.0508m). As far as it concerns the com-
putation of the rW gradient vector, it should be noticed that cost function sensitivities with respect to con-
figuration variables can be easily obtained in fashion of closed form expressions while sizing variable
sensitivities are obtained in the same way as in the 200bar truss case.

Since the truss structures shown in Figs. 2 and 3 are statically undetermined, structural response sensi-
tivities (i.e., constraint gradients) are obviously not available in explicit form.

All optimizations were started from both the lower bound and upper bound of cross sectional areas (the
latter was set to 100 in.2: i.e., 0.64516m2). ISA was compared to a classical SA algorithm where the opti-
mization variables are perturbed one by one and global annealing is not performed (see Appendix A). Fi-
nally, the structures were optimized also with the TRLP-DOT algorithm where an enhanced version of
LESLP (indicated as LSTRLP in Lamberti and Pappalettere, 2004) is combined with the commercial
optimizer DOT�, 1995. In particular, DOT solved the approximate sub-problems with a feasible direction
based routine thus saving considerable amounts of CPU time with respect to the Simplex solver used by
LESLP and LSTRLP.
3.2. Composite material characterization

An eight-ply woven reinforced fiberglass-epoxy composite laminate utilized as substrate for printed cir-
cuit boards was characterized in terms of in-plane mechanical behavior. The laminate is shown in Fig. 4. A
46mm long, 13mm tall and 1.2mm thick specimen was cut from a slice of material. The in-plane properties
assumed as target values in the optimization process were known from standard mechanical tests: Ex = 25-
GPa; Ey = 22GPa; Gxy = 5GPa; mxy = 0.28. In order to find the values of in-plane elastic constants of the
laminate, we minimized the difference between numerical data obtained by means of FEM analysis and
experimental data measured by means of phase-shifting electronic speckle pattern interferometry (PS-
ESPI).

PS-ESPI is based on the fact that two beams originated from a coherent light source (laser) produce an
interferometric pattern when they hit on a surface. The light intensity in each point of the specimen surface is



Fig. 4. Reinforced fiberglass-epoxy laminate characterized by means of ISA and PS-ESPI.
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an harmonic function I(x,y,U(x,y)) of the pixel coordinate (x,y). In order to recover the phase U(x,y) of the
I(x,y, U(x,y)) light intensity function, N different interferometric patterns are taken at two different expo-
sures: the reference configuration (i.e., no load is applied) and the loaded one. This is equivalent to introduce
N shifts in phase in order to span at least the 2p angle for which the harmonic function I(x,y) stays the same
(i.e., for an harmonic function it obviously holds: I(x,y,U(x,y) + 2p) = I(x,y,U(x,y))). From each set of N
acquisitions done in the reference or in the loaded configuration, it is possible to get the distribution of phase
U(x,y) for each point of the specimen surface in fashion of a fringe pattern. Finally, the unknown displace-
ments are easily computed as they are proportional to the DU(x,y) phase difference between the two different
exposures. For each pixel (x,y), the corresponding u(x,y) displacement is then:
uðx; yÞ ¼ DUðx; yÞ
4p

� k
sin h

; ð13Þ
where k and h, respectively, are the laser light wave length and the illumination angle (see the schematic of
the experimental set-up shown in Fig. 5).

A very common strategy in PS-ESPI is to use the four-phase technique where N = 4 and phase shifts are
hence chosen spaced by 90� (i.e., 2p/N). In such a case, the phase difference DU(x,y) is given by the
expression:
DUðx; yÞ ¼ arctan
I4;loadedðx; yÞ � I2;loadedðx; yÞ
I1;loadedðx; yÞ � I3;loadedðx; yÞ

� �
� arctan

I4;referenceðx; yÞ � I2;referenceðx; yÞ
I1;referenceðx; yÞ � I3;referenceðx; yÞ

� �
; ð14Þ
where the I1,. . .(x,y), I2,. . .(x,y), I3,. . .(x,y) and I4,. . .(x,y) are the light intensity values recorded in the four
different acquisitions done for the ‘‘loaded’’ or ‘‘reference’’ configurations.



Fig. 5. Schematic of the PS-ESPI set-up utilized in the material characterization (test case 4).
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Fig. 5 shows the typical PS-ESPI experimental set-up based on the Leendertz�s double illumination inter-
ferometer (see Leendertz, 1970). A 35mW He–Ne laser (k = 632.8nm) provides the coherent light source. A
closed loop controlled piezoelectric transducer (PZT) is used as phase shifter. The intensity distributions of
the combined light beams are recorded by a B/W CCD camera (795 · 596 pixel sensors). The images are
then digitized by means of an 8-bit frame grabber. The laser beam is expanded first, filtered then and col-
limated finally. In order to preserve coherence, the double illumination is obtained by reflecting a certain
fraction of the laser beam onto a mirror (mounted on the PZT device) which is orthogonal to the surface
of the specimen. The illumination angle h made by the laser beams with the direction of observation is 20�.
More details on the optical set-up used in this research can be found in Genovese et al. (2004).

In order to determine the elastic constants of the laminate shown in Fig. 4, the following optimization
problem can be formulated:
min WðEx;Ey ;Gxy ; mxyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Npix

PNpix

j¼1

uj
x;y;TOT

�uj
x;y;TOT

uj
x;y;TOT

� �2
s2

64
3
75;

Ex > Ey ;

1� mxyðEy=ExÞ > 0;

El
x 6 Ex 6 Eu

x ;

El
y 6 Ey 6 Eu

y ;

Gl
xy 6 Gxy 6 Gu

xy ;

mlxy 6 mxy 6 muxy ;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð15Þ
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where the error function W is to be minimized and the unknown elastic constants Ex, Ey, Gxy and mxy of the
laminate are included as optimization variables. The two additional constrains in expression (15) ensure
positive definiteness of the [Q] stiffness matrix.

Let ujx;y;TOT and ujx;y;TOT denote the values of in-plane displacement in correspondence of the jth model
node and image pixel determined, respectively, by means of finite elements and by means of PS-ESPI.
The ‘‘x’’, ‘‘y’’ and ‘‘TOT’’ subscripts respectively indicate that horizontal, vertical or total	
i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q 

displacements are considered. It is intended that the ujx;y;TOT displacements are target values

since experimental measurements do not require to know the values of elastic constants a priori. Con-
versely, the values of elastic constants must be specified as input in the numerical analysis carried out with
finite elements in order to calculate the ujx;y;TOT displacements. In addition, let Npix denote the total number
of points (image pixels/FEM nodes) at which the experimental and numerical results are compared. In or-
der to preserve the correspondence between the pixels of the recorded images and the nodes of the FEM
model, the FEM model of the specimen is built by setting the element size equal to the pixel size.

Although the error function W depends on only four variables, it is certainly a highly non-smooth func-
tion. In order to support this statement, a sensitivity analysis was carried out for two different load cases:
three-point-bending and shear load cases (FEM models are shown in Fig. 6). The expected ‘‘optimum de-
sign’’ (i.e., the laminate elastic constants to be determined) was perturbed by changing one elastic constant
at a time. It was found that the ‘‘optimum’’ is clearly and univocally located in correspondence of the mate-
rial property target values. However, the shape and the slope of the W function changed significantly
depending on the fact that each elastic constant was increased or reduced. This fact introduced significant
non-smoothness in the optimization problem (15) and thus justified the use of simulated annealing.
Fig. 6. Finite element models used in the numerical trials of material property identification.
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As far as it concerns determination of gradients, it should be noticed that the scenario in problem (15) is
the exact reversal of truss design problems. In fact, constraint gradients can be now determined explicitly
while computation of cost function sensitivities involves finite element analysis.

The suitability of the ISA optimizer for material characterization problems was evaluated through a set
of eight cases where the target displacements are generated numerically by FEM analyses. The commercial
finite element code ANSYS� (2003) was utilized to perform structural analyses. The minimization problem
(15) was also solved by means of the optimization routine available in ANSYS. The specimen was modeled
with PLANE42 elements each of which includes four nodes and two degrees of freedom per node. Two dif-
ferent loading conditions were considered: three-point-bending and in-plane shear (see Fig. 6).

The eight numerical trials are grouped as follows: Runs 1–3 and 7 where the composite specimen expe-
rienced three-point-bending; Runs 4–6 and 8 where the composite specimen experienced in-plane shear. The
definition strategy of the W error function changed in the different optimization runs: the errors on the ux
displacements were utilized in Runs 1–2 and 4–5 while the errors on the uy displacements were utilized in

Runs 3 and 6. Finally, the total displacements uTOT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
were utilized in Runs 7–8.

In the experimental case, the W error function included the ux displacements because the Lendeertz�s
interferometer used in this study measures horizontal in-plane displacements. The composite laminate spec-
imen was mounted on two supports spaced by 30mm (see Fig. 5). The vertical load which generated the
three-point-bending state was provided to the specimen by a rounded tip mounted on a sledge moved by
a micrometric screw. The three-point-bending test was chosen in the experimental case of material identi-
fication because it minimizes the amount of rigid body motions (RBMs) of the specimen during the loading
phase. This is very useful because RBMs may invalidate PS-ESPI measurements as they cause speckle pat-
tern de-correlation. The vertical displacement of the rounded tip generated by an F = 140N vertical load
applied to the specimen was such that to preserve correlation of speckle patterns thus ensuring enough den-
sity of phase fringes. Since the load applied in the experimental case was seven times as large as the load
applied in the eight numerical trial cases, four additional optimizations where the vertical load ranged from
20 to 250N (the last value is the load at which the fringe contrast was almost lost) were run. As expected,
the ISA algorithm resulted insensitive to the load amplitude. In fact, the convergence curves practically
coincided after only 10 cooling cycles.
4. Results and discussion

The ISA algorithm was coded into a Fortran 90 program. The same was done for the optimizer imple-
menting classical SA and the Sequential Linear Programming (SLP) optimizer used as basis for comparison
with ISA. The optimizer based on classical SA included an 1-directional annealing search strategy (see
Appendix A) and a constant rate cooling schedule. The SLP code integrated the LSTRLP algorithm devel-
oped by two of the present authors (see Lamberti and Pappalettere, 2004) and the well known commercial
optimizer DOT� developed by the Vanderplaats R&D. The optimization of the truss structure was carried
out on a DEC-Alpha 500MHz Unix workstation. The material identification problem was run on a
700MHz Pentium III personal computer in order to include the FEM solver of the ANSYS� software
as a subroutine of the ISA code.

Table 1 shows the results obtained in the truss optimization problems. The table reports the number of
cooling cycles, the number of global annealing cycles (within round brackets) and the number of constraint
linearizations. The number of linearizations obviously coincides with the number of design cycles per-
formed when the optimization was carried out with the Sequential Linear Programming method (this
run is denoted as ‘‘TRLP-DOT’’ in the rest of the paper). The number of structural analyses and the
CPU time required in the optimizations are also quoted in the table.



Table 1
Comparison of the numerical efficiency of different optimizers in truss design problems

Problem Initial design Optimization
algorithm

Structural
weight (kg)

Number K of
cooling (global)
cycles

Constraint
linearizations
or sub-problems

Structural
analyses

CPU
time (s)

Two-hundred bar truss rLIM = 30,000psi Variables at their upper
bound

ISA 12,767.294 43 (21) 22 15,411 3133
Classical SA 12,779.287 54 N/A 30,624 6107
TRLP-DOT 12,794.060 N/A 44 17,744 3082
LESLPa 13,054.851 N/A 28 11,273 4148b

LESLPa,c 12,823.808 N/A
Variables at their lower
bound

ISA 12,764.179 40 (15) 30 18,508 3613
Classical SA 12,775.091 49 N/A 27,810 5542
TRLP-DOT 12,800.971 N/A 44 17,657 3444

Two-hundred bar truss rLIM = 10,000psi Variables at their upper
bound

ISA 13,102.237 37 (20) 19 12,310 3120
Classical SA 13,105.972 49 N/A 36,421 8299
TRLP-DOT 13,175.328 N/A 41 16,499 4874
LESLPa,b,d 13,129.595 N/A 24 9697 9968b

Variables at their lower
bound

ISA 13,103.217 43 (20) 23 16,110 4554
Classical SA 13,107.747 45 N/A 39,010 9050
TRLP-DOT 13,124.309 N/A 44 17,678 5492
LESLPa,b 13,120.480 N/A 20 8078 8140b

Cantilevered bar truss Variables at their upper
bound

ISA 3551.007 33 (17) 16 7785 60.6
Classical SA 3610.443 52 N/A 13,238 107
TRLP-DOT 3630.640 N/A 54 8791 198
LSRTLPe 3633.748 N/A 29 4788 170b

Variables at their lower
bound

ISA 3581.897 42 (19) 25 11,350 83.7
Classical SA 3663.281 53 N/A 23,840 186
TRLP-DOT 3690.072 N/A 78 12,684 218

a See Lamberti and Pappalettere (2003a).
b This optimization was run on a computer about 30% slower than the 500MHz DEC-Alpha used in this study.
c This optimization run included 96 design variables.
d This optimization was started from an uniform design of 98.5135 in.2.
e See Lamberti and Pappalettere (2004).
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It can be seen that ISA found the best design either when the optimization started from a feasible point
(for design variables at the upper bound, the most active constraint was about 14.5% and 74% of allowable
limits, respectively, for the 200bar truss and the cantilevered bar truss) and when the starting point violated
constraints very much (for design variables at the lower bound, constraint violation ranged between 7600%
(nodal displacements) and 14,530% (element stresses) in the 200bar truss case while raised to 32,000% (ele-
ment stresses), 73,900% (nodal displacements) and 73,332.5% (element buckling) in the cantilevered bar
truss case).

In the sizing optimization of the 200bar truss, the structural weights found by classical SA and by the
TRLP-DOT gradient based optimizer were slightly heavier than their ISA counterpart. However, the larg-
est difference in weight resulted less than 0.5%. Remarkably, the optimized design found by ISA in the
case of a 30,000psi stress limit was about 300kg lighter than the best solution recently quoted in literature
(Lamberti and Pappalettere, 2003a). It is to be noticed from Table 1 that each optimizer used in this study
designed a structure which is lighter than the 12,823.808kg weighted structure designed by the LESLP code
in the 96 design variable case (see Lamberti and Pappalettere, 2003a). This fact proves that the algorithms
to which ISA was compared in this research have global optimization capabilities that allowed them to be
consistent with the design freedom included in the optimization thus avoiding designs that are clearly local
optima.

ISA was more efficient than LESLP also for the more severe stress limit of 10,000psi. However, the
weight improvement was less than 0.2%. Finally, TRLP-DOT found the heaviest design when the optimi-
zation started from a feasible point.

In the configuration optimization problem, the weight improvement achieved by ISA with respect to the
LSTRLP algorithm recently published in literature (see Lamberti and Pappalettere, 2004) was more than
80kg. The present code was superior over classical SA and TRLP-DOT obtaining now weight reductions
of 2% and 3%, respectively. When the optimization started from an infeasible point, all of the optimization
codes considered in this study exhibited a weight penalty. However, ISA was able to design a structure yet
lighter than the best solution quoted in literature.

The data reported in Table 1 show also that ISA designed the very efficient structures within less cooling
cycles than classical SA. This fact is very significant because SA based algorithms that perturb simultane-
ously all the optimization variables result, in general, faster than SA algorithms where optimization vari-
ables are perturbed one by one. However, global annealing algorithms may converge to sub-optimal
designs (see the discussion in Yu Chen and Su, 2002).

The use of global annealing allowed ISA in the sizing optimization problems to save between 30% and
60% of CPU time with respect to classical SA. Reductions in computational time achieved by ISA were
more significant in the configuration optimization problem. In particular, ISA was more than twice as fast
as classical SA. The global annealing strategy implemented by ISA allowed to reduce significantly the num-
ber of constraint evaluations. Since the number of structural analyses quoted in the table includes also con-
straint function linearizations, the gradient calculation task executed by ISA in each linearization was
computationally not too expensive.

The TRLP-DOT code based on Sequential Linear Programming was the fastest optimizer overall in the
case of the 200bar truss optimized with a 30,000psi stress limit but resulted slower than ISA in the
10,000psi stress limit case. However, the computational efficiency of TRLP-DOT is due in most part to
the fact that the linear solver originally used in LESLP was replaced in the present study by the modified
feasible direction solver implemented in TRLP-DOT. In fact, Table 1 shows that ISA and TRLP-DOT re-
quired almost the same number of structural analyses in all of the optimization problems. In addition,
TRLP-DOT formulated and solved much more sub-problems than LESLP within about the same CPU
time (this statement implies data scaling to account for differences in computer speed). However, the very
large number of iterations required by TRLP-DOT in the configuration problem caused the gradient based
optimizer to be about three times less fast than ISA.



222 K. Genovese et al. / International Journal of Solids and Structures 42 (2005) 203–237
In order to gather more evidence of the relative behavior of the different algorithms considered in this
study, convergence curves recorded in the optimization process and constraint margins are reported,
respectively, in Figs. 7–10.

Fig. 7 shows the convergence curves recorded for the 200bar truss structure. As far as it concerns the
30,000psi stress limit, it appears that ISA was much faster than classical SA in reducing the cost function
when the optimization started from a feasible point. In addition, in the case of infeasible initial design, ISA
found a feasible design already in the first cooling cycle while classical SA required seven cooling cycles.
Therefore, the improvement routines implemented in ISA enhanced significantly the overall performance
of the optimizer.
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Fig. 7. Convergence curves for different algorithms in the 200bar truss case.
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The convergence behavior of ISA was comparable to that exhibited by TRLP-DOT. This is because ISA
perturbs the design variables by moving along descent directions. When the starting design was infeasible,
TRLP-DOT required about 20 iterations to enter in a feasible region because of the tight move limits im-
posed on the optimization variables. Although the heaviest intermediate design found by ISA in this case
was about four times as large as that found by TRLP-DOT, the convergence curves of ISA and TRLP-
DOT practically coincided after 21 iterations.

Similar results were found for the 10,000psi stress limit case. ISA and TRLP-DOT convergence curves
coincided after about 25 iterations in spite of the fact that ISA heaviest intermediate design was now seven
times as large as that found by TRLP-DOT. Convergence behavior of classical SA resulted very sensitive to
stress limit value and the optimizer was forced to increase the cost function up to about 250,000kg (i.e., five
times more than in the 30,000psi stress limit case) in order to enter in a feasible region.

An interesting point suggested from data in Table 1 is the following. The difference in optimized weights
in the 200bar truss case is marginal (less than 0.5%). It is generally acknowledged that minor weight
improvements in large-scale problems may be produced by the interaction between constraint tolerances
and permitted constraint violations rather than by differences in algorithm formulations. However, the pre-
sent authors want to point out that no constraint violation was permitted in this study. Therefore, any dif-
ference in weight reported in Table 1 will indicate that the corresponding optimization algorithm converged
prematurely or got stuck in local minima. This statement is supported by the analysis of constraint margins
plotted in Fig. 9. It can be seen that ISA was able either to recover immediately constraint violation and to
keep design search process inside a feasible region throughout the optimization process. Conversely, TRLP-
DOT had to resize repeatedly the move limits since many intermediate designs violated constraints more
than at the previous optimization cycle or the constraint violation decreased too slowly. Further evidence
of this argument is provided by the fact that classical SA, which does not use move limits found always
structural weights lighter than their DOT-TRLP counterpart even though some intermediate designs were
infeasible.

In the configuration optimization problem, Fig. 8 shows that TRLP-DOT was apparently faster
than ISA in reducing structural weight when optimization started from a feasible design. However,
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constraint margin analysis reveals that TRLP-DOT intermediate designs violated buckling (up to 25%) and
stress constraints (up to 5%) in the first 10 design cycles (see Fig. 10). Moreover, the gradient based optim-
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izer was not able to eliminate constraint margin oscillations before than 40 iterations were completed (see
again Fig. 10).

In the case of infeasible starting point, TRLP-DOT exhibited again large oscillations in buckling con-
straint margins (still 25% and 15% violation respectively after 44 and 54 optimization iterations) and re-
quired almost 30 iterations in order to keep intermediate designs almost feasible for some consecutive
optimization cycles. Conversely, ISA recovered immediately the constraint violation and found a com-
pletely feasible (i.e., all constraint margins are strictly less than 1) intermediate design within only five cool-
ing cycles. It should be noticed that ISA was able to ‘‘isolate’’ the effect of each different type of constraint
in the sense that buckling and stress constraints became immediately inactive and did not return critical
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before 15 design cycles. This behavior can be explained as follows. The cantilevered bar truss has been pro-
ven to have some degree of non-convexity in the configuration variable space (see Lamberti and Pappalet-
tere, 2003a,b). However, configuration variables may greatly affect the distribution of critical buckling
loads in the truss members. Since simulated annealing deals with design space non-convexity, ISA was able
to immediately turn buckling constraints uncritical.

Details of optimized designs of truss structures are not reported in the paper in order to save space.
However, Fig. 11 shows the distribution of the fSIZ ratio between the optimized cross section values
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Table 2
Comparison of numerical efficiency of ISA and ANSYS in the material identification problem when target displacements are generated numerically

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8
Load Three-point-bending In-plane shear Bending Shear

Displacement included in w ux ux uy ux ux uy uTOT
a uTOT

a

Initial elastic constantsa Ex = 27,500 Ex = 4000 Ex = 4000 Ex = 27,500 Ex = 4000 Ex = 4000 Ex = 4000 Ex = 4000
uTOT

b Ey = 20,000 Ey = 3000 Ey = 3000 Ey = 20,000 Ey = 3000 Ey = 3000 Ey = 3000 Ey = 3000
Gxy = 4000 Gxy = 20,000 Gxy = 20,000 Gxy = 4000 Gxy = 20,000 Gxy = 20,000 Gxy = 20,000 Gxy = 20,000
mxy = 0.308 mxy = 0.05 mxy = 0.05 mxy = 0.308 mxy = 0.05 mxy = 0.05 mxy = 0.05 mxy = 0.05

Initial% error on displacements
Average 12.8 89.9 287 23.0 35.4 106 297 37.4
Maximum 32.9 608 324 24.8 60.5 119 387 120

Calculated elastic constants ISA Ex = 24,998 Ex = 25,001 Ex = 25,000 Ex = 24,993 Ex = 24,993 Ex = 25,011 Ex = 24,996 Ex = 24,992
Ey = 21,975 Ey = 21,966 Ey = 22,000 Ey = 21,999 Ey = 21,995 Ey = 22,000 Ey = 21,996 Ey = 21,987
Gxy = 4999 Gxy = 5003 Gxy = 5000 Gxy = 5000 Gxy = 5000 Gxy = 4999 Gxy = 5002 Gxy = 5001
mxy = 0.280 mxy = 0.280 mxy = 0.280 mxy = 0.280 mxy = 0.280 mxy = 0.280 mxy = 0.279 mxy = 0.279

Residual % error on displacements
Average 0.0346 0.0349 0.00 0.000689 0.00274 0.0594 0.00379 0.00468
Maximum 0.2900 0.3120 0.00 0.001610 0.00422 0.9810 0.01740 0.00920

Calculated elastic constants ANSYS Ex = 25,035 Ex = 24,997 Ex = 24,997 Ex = 25,000 Ex = 25,076 Ex = 25,153 Ex = 25,001 Ex = 25,002
Ey = 22,037 Ey = 21,971 Ey = 21,999 Ey = 21,995 Ey = 22,025 Ey = 21,900 Ey = 22,014 Ey = 22,042
Gxy = 5019 Gxy = 5003 Gxy = 5003 Gxy = 5000 Gxy = 5000 Gxy = 4950 Gxy = 4997 Gxy = 4998
mxy = 0.281 mxy = 0.281 mxy = 0.279 mxy = 0.281 mxy = 0.280 mxy = 0.283 mxy = 0.281 mxy = 0.281

Residual % error on displacements
Average 0.259 0.215 0.0139 0.00363 0.0144 0.403 0.00556 0.00643
Maximum 1.785 2.140 0.0189 0.02660 0.0241 3.290 0.02241 0.01210

Target values: Ex = 25GPa; Ey = 22GPa; Gxy = 5GPa; mxy = 0.28.
a uTOT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
.

b uTOT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2x þ u2y

q
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obtained when the optimization started from a feasible point and an infeasible point, respectively. For a
given element, fSIZ = 1 will indicate that the optimized design is insensitive to the starting point. Should
a design be near to the global optimum, the fSIZ parameter will be very close to 1 for all truss members.
It is apparent from the figure that ISA achieved the smallest dispersion (about 2.5%) of the fSIZ parameter
around 1 while TRLP-DOT exhibited the largest dispersion. This is consistent with the fact that TRLP-
DOT terminated prematurely the optimization process. Behavior of classical SA was similar to ISA but
the fSIZ parameter exhibited a much larger number of local peaks and valleys.

For the cantilevered bar truss case, Fig. 11 shows also the distribution of the fLEN ratio between the
optimized lengths of each truss element for the two initial designs. It can be seen that ISA was again the
most robust algorithm overall. Interestingly, element lengths optimized by ISA increased averagely by
1% when the design process started from an infeasible point. This fact is consistent with constraint margin
plots of Fig. 10 and confirms that ISA was able to carry out the entire design search process inside regions
where buckling constraints are not critical (in spite of the 73,332.5% initial violation) thus reducing the role
played by the configuration design space. Conversely, classical SA and TRLP-DOT had to reduce signif-
icantly (between 2 and 3 times) the length of some elements, which resulted very sensitive to buckling.

Table 2 summarizes the results of the eight preliminary numerical trials of material identification carried
out with the ISA code and the ANSYS program. Table 2 reports also the type of load applied to the spec-
imen, type of displacement included in the W error function and the initial guess on elastic constants.

It is apparent from Table 2 that ISA is insensitive to how the W error function is defined as well as is
insensitive to the loads applied to the specimen and to the initial value of elastic constants. The table shows
also that ISA was superior over the ANSYS optimization module. In fact, the percentage average and max-
imum errors on displacements computed in correspondence of the values of elastic constants determined by
ISA were always less than 0.06% and 1%, respectively. In Run 3, the present code was even able to exactly
determine the values of elastic constants. Conversely, ANSYS exhibited residual errors up to 3.29% (Run
6).

Further evidence of the relative merits of ISA and ANSYS can be gathered from Fig. 12 which shows,
for Runs 7–8, the plots of the W error function versus the number of cooling cycles/optimization iterations.
It can be seen that ISA reduced very quickly the value of W while the ANSYS code still exhibited an oscil-
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latory behavior when ISA already had practically converged. The same relative behavior shown in Fig. 12
was seen in the other six numerical trials. This fact suggested not to use the ANSYS optimization routine in
the experimental case where determination of displacements from interferometric patterns might have
introduced noises in the optimization in fashion of local peaks of the error function W.
Fig. 13. Phase map obtained with PS-ESPI and schematic of FEM model, loads and locations at which experimental and numerical
data are compared.
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In the experimental case, ISA was not compared to any other optimization code. Besides the aforemen-
tioned argument on ANSYS, classical SA is not attractive since it implies too many FEM analyses. Finally,
preliminary tests on TRLP-DOT showed that the performance (number of iterations and total CPU time)
of the SLP based optimizer was sensitive to the initial guess on the material properties because of the non-
smooth behavior of the sensitivities of the W function. Although also ISA utilizes gradient information, the
random generation process included in the present algorithm ensures enough design freedom allowing thus
to by-pass quickly the non-smooth regions of design space.

Fig. 13 shows the phase distribution in the composite specimen determined by means of PS-ESPI in the
experimental case. It can be seen that the phase fringes reproduced the ux displacement field in a continuous
fashion. The horizontal axis g where the ex strains ideally get equal to zero (bending neutral axis), the
loaded zone and the simply supported zone are also indicated in the figure. In addition, the figure shows
the FEM model used for structural analysis along with the locations at which numerical and experimental
data were compared. Because of symmetry about the vertical axis and limitations in size of the optics used
in the experiments, the region of interest considered along the x-direction was about 18mm long.

Since the PS-ESPI set-up used in the experiments allowed us to measure horizontal displacements (see
Fig. 5), the W error function was built by comparing the numerical and experimental values of ux displace-
ments at the three locations indicated in Fig. 13. The W error function was minimized in all those three
cases. Finally, an additional optimization run (indicated as ‘‘ALL’’ in the rest of the paper) included all
the nodes/pixels considered in the other three runs.

Table 3 presents the results of the material identification problem for the experimental case. Different
initial guesses on material properties were made in order to introduce more uncertainty in the optimization.
However, the ISA optimizer was again insensitive to the starting point and hence recovered the consider-
ably large initial percentage errors. The values of elastic constants determined by ISA were very close to the
target values. Although the average and maximum percentage errors were obviously larger than in the test
cases with numerically generated target displacements (see Table 2), the accuracy achieved in the experi-
mental case is however acceptable since the largest error was less than 3%. This residual error was certainly
caused by uncertainty factors such as electronic noise mixed with interferometric patterns, overall efficiency
of filtering, local de-correlation of speckle patterns, etc.
Table 3
Sensitivity of ISA to the set of experimental data used in the material identification problem

Location at which data are compared x = 5mm x = 10mm x = 16.5mm All locations

Initial values of elastic constantsa Ex = 5000 Ex = 10,000 Ex = 30,000 Ex = 3000
Ey = 3000 Ey = 8000 Ey = 10,000 Ey = 2000
Gxy = 2000 Gxy = 2000 Gxy = 8000 Gxy = 1000
mxy = 0.1 mxy = 0.4 mxy = 0.01 mxy = 0.01

Initial % error on ux
Average 140.1% 146.6% 37.6% 281%
Maximum 197.4% 226.2% 148.4% 870%

Calculated values of elastic constants Ex = 25,016 Ex = 25,048 Ex = 25,031 Ex = 25,043
Ey = 22,049 Ey = 21,989 Ey = 21,963 Ey = 22,034
Gxy = 5002 Gxy = 5035 Gxy = 4969 Gxy = 5000
mxy = 0.281 mxy = 0.279 mxy = 0.279 mxy = 0.279

Residual % error on ux
Average 1.351% 1.469% 1.118% 2.033%
Maximum 2.711% 2.481% 2.180% 2.775%

a Target values: Ex = 25GPa; Ey = 22GPa; Gxy = 5GPa; mxy = 0.28.
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Finally, Fig. 14 shows the percentage error on the ux displacement computed at each FEM node/image
pixel of the different control stations (‘‘x = 5mm’’, ‘‘x = 10mm’’, ‘‘x = 16.5mm’’, ‘‘ALL’’) when the values
of elastic constants (i.e., the optimum design) found by ISA were given as input to the FEM model. It can
be seen that the maximum error occurs near the middle of the specimen height: that is, where the bending
neutral axis is approximately located. This happened certainly because the horizontal displacements are
much smaller near the neutral axis than at the bottom and at the top of the specimen and hence the optim-
izer is more sensitive to sudden changes in the horizontal displacement sign which may result in local peaks
of the W error function.
5. Summary and conclusions

This paper described a novel optimization algorithm implementing an enhanced formulation of simu-
lated annealing (SA). The algorithm—denoted as ISA (improved simulated annealing)—combined global
and local annealing search mechanisms. In order to speed up convergence, the ISA algorithm included gra-
dient information and defined descent directions whose components are generated randomly. In addition,
in case of infeasible intermediate designs, ISA perturbed the design by moving along directions such that
cost function may improve and constraints get less violated. Local annealing where optimization variables
are perturbed one by one was performed each time global annealing did not yield significant improvements
in design. Linear approximations controlled by a trust region model were used in order to reduce the num-
ber of exact analyses thus saving computational time. Finally, the cooling schedule implemented in ISA
reduced adaptively the temperature based on the convergence behavior exhibited during the optimization
process.

In this study, the ISA algorithm was tested in complicated optimization problems that exhibit non-
convex and/or non-smooth behavior: (i) the weight minimization of a large-scale truss structure with
200 design variables and 3500 non-linear constraints; (ii) the configuration optimization of a cantilevered
bar truss with 81 design variables; (iii) a typical example of reverse engineering where the goal was to
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characterize the in-plane behavior of an eight-ply woven reinforced fiberglass-epoxy composite laminate by
minimizing the difference between the displacements computed with FEM analyses and the displacements
measured experimentally with a powerful optical technique referred to as phase shifting electronic speckle
pattern interferometry (PS-ESPI).

It is to be noticed that the aforementioned test cases were chosen so that gradients are not available
explicitly. This fact allowed to overcome the apparent limitation of ISA with respect to classical simulated
annealing which does not require gradient information.

ISA was compared to a classical implementation of SA, state-of-art optimization codes and commercial
software. The results indicated that ISA was the most efficient algorithm in truss optimization problems
allowing weight reductions between 80 and 300kg with respect to the best solutions recently quoted in lit-
erature. It should be noticed that the present algorithm was clearly superior over classical SA and its con-
vergence speed resulted comparable to a gradient based optimizer implementing a sophisticated version of
Sequential Linear Programming.

In order to check the suitability of ISA for material identification problems, eight trial cases with numer-
ically generated target displacements were carried out. As expected, ISA resulted insensitive to the load
type, initial guess of elastic constants and target displacements included in the W error function. Moreover,
ISA outperformed the optimization routine available in the well known commercial general purpose FEM
software ANSYS.

Hence, we used ISA also in a real case where horizontal displacements of a 46mm long, 13mm tall and
1.2mm thick specimen subjected to three-point-bending were measured by means of PS-ESPI. Three sets of
points (image pixels/FEM nodes) were chosen at different locations on the specimen in order to build the
error function. Four optimizations runs were carried out: one for each set of points and the last one for all
of the points simultaneously.

ISA proved itself capable to accurately characterize the behavior of the 8-ply composite laminate. In
fact, the residual error between the displacements measured by means of PS-ESPI and those computed
by FEM analysis was less than 3% at the end of the identification process. This error was probably due
to uncertainty factors inherent to PS-ESPI (electronic noise, filtering efficiency, etc.) and to numerical insta-
bilities caused by local peaks of the W error function.

The complexity and variety of the optimization problems successfully solved in this study certainly sup-
port the conclusion that ISA is a powerful optimization code. However, the present authors point out that
ISA should be tested further in other optimization problems in order to draw more general conclusions.
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Appendix A. Effect of design perturbation strategy in simulated annealing

This appendix presents the results of a trade study aimed to investigate on how the overall performance
of simulated annealing may be sensitive to the random generation mechanism of trial designs implemented
by the optimizer. Such an investigation served to choose a SA based algorithm, which could be used as a
significant basis for comparison with the sophisticated algorithm ISA (improved simulated annealing) pre-
sented in the main part of this paper. In order to accomplish this task, we tested three different annealing
schemes in two well-known optimization problems that have local minima: the Rosenbrock�s problem and
the weight minimization of a 10bar truss under stress and displacement constraints. The optimization runs
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started very far from the global minimum of each problem in order to check if the different optimizers were
able to reduce the cost function quickly and to approach the optimum within not too many cooling cycles.

The Rosenbrock�s valley problem is often referred to as the ‘‘Banana function problem’’. The analytical
formulation of the optimization problem is the following:
minW ¼
PNDV�1

i¼1

½100 � ðxiþ1 � x2i Þ
2 þ ð1� xiÞ2
;

�2:048 6 xk 6 2:048

8<
: ðk ¼ 1; . . . ;NDVÞ; ðA:1Þ
where NDV is the number of optimization variables. The problem statement implies that the global min-
imum of the cost function is reached if all the design variables are equal to 1. Therefore, the global mini-
mum of the cost function is 0.

The ‘‘banana problem’’ denotation is because the cost function W expressed by (A.1) represents in the
NDV-dimensional design space an hyper-surface with a long, narrow, parabolic shaped flat valley. This val-
ley contains the global optimum, which is hidden among many local minima. Here, the optimization run
included 50 design variables. The design process started with all the optimization variables set to 2.

The 10bar truss structure shown in Fig. A.1 is to be designed for minimum weight. This sizing optimi-
zation problems includes 10 design variables each of which is the cross sectional area of a truss member (see
expression (11) in the main part of this paper). The lower bound of the design variables is 0.1 in.2

(0.00064516m2). Nodal displacements of the free nodes are constrained to be less than 2 in. (0.0508m) while
the allowable stress (the same in tension and in compression) is 25,000psi (17.577kgf/mm2). Downward
forces of 100,000 lbf (45,359.240kgf) are applied at nodes 2 and 3. Previous investigations found that this
optimization problem is non-convex and has a local minimum of 2302.7kg besides the global minimum of
2295.6kg. Here, we started the optimization from a very feasible point: design variables at the upper bound
(100 in.2: that is, 0.64516m2).

The two non-convex problems described above were hence solved by means of three annealing strategies
that included different mechanisms for generating trial designs. The algorithms are briefly described in the
following.

(i) The optimization variables are perturbed one at a time and the optimizer performs function evalua-
tion each time a new trial design is generated. Each design variable is updated as follows:
xTR;j ¼ xOPT;j þ sNRD � ðxuj � xljÞ � qj � cK ðj ¼ 1; . . . ;NDVÞ; ðA:2Þ
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Fig. A.1. Schematic of the 10bar truss structure.
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where qj is a random number in the interval (0,1); sNRD is set to 1 or �1 if the random number qj is
greater or smaller than 0.5, respectively; cK is a knockdown factor defined in fashion of expression (4)
in the main part of this paper; K indicates the current cooling cycle.
This strategy is formally equivalent to the ‘‘local annealing’’ scheme included in the ISA algorithm (see
description of Step 6 in the main part of this paper).

(ii) All the NDV optimization variables are perturbed simultaneously. Since the trial design vector XTR

includes the optimization variables defined in fashion of expression (A.2), NDV random numbers qj

must to be generated in order to define each new trial design point.
(iii) All the NDV optimization variables are perturbed simultaneously. Again, definition of each new trial

design XTR in fashion of expression (A.2) implies generating NDV random numbers. However, since
the cost function of the problem is to be minimized, the sNRD parameter for perturbing the design jth
variable is now set to 1 or �1 if it holds, respectively, oW/oxj < 0 or oW/oxj > 0. This strategy is sim-
ilar to the ‘‘global annealing’’ scheme included in ISA (see description of Step 4 in the main part of
this paper) but the steps chosen for each design variable are not centered about the current optimal
design.
Here, the oW/oxj sensitivities could be easily computed since the banana problem has an explicit cost
function while the cost function (weight) of the truss is linear in sizing variables (i.e., the cross sec-
tional areas of the truss members).

In summary, algorithm (i) is based on an 1-directional annealing search strategy while algorithms (ii) and
(iii) implement multi-directional annealing search strategies. For this reason, algorithms (i), (ii) and (iii) are
respectively denoted as ‘‘1-directional’’, ‘‘Multi-directional—no cost gradient’’ and ‘‘Multi-directional—
with cost gradient’’ in the rest of the paper. In all of the algorithms mentioned above, design variables
are changed following their order sequentially.

In addition, the annealing algorithms compared in this appendix include a cooling schedule with an uni-
form cooling rate. The temperature to be used in the Kth cooling cycle is reset as TK = bKTK�1 by using the
constant value bK = 0.95. Finally, the stopping criterion is the same as the one used for the ISA algorithm
(see expression (9) in the main part of the paper).

The convergence curves recorded in the two optimization problems for the three annealing strategies de-
scribed above are shown in Fig. A.2. The initial valueW0 of the cost function is shown in the figure. The plots
reported in Fig. A.2 include also the convergence curves obtained with the Sequential Quadratic Program-
ming (SQP) optimization routine implemented in the commercial softwareMatlab� 6.1 (2001). This commer-
cial optimizer was utilized in the present study because it proved to be very efficient in solving complicated
structural optimization problems with multiple design spaces (see Lamberti and Pappalettere, 2004).

It can be seen from Fig. A.2 that algorithms (ii) and (iii) reduced, in the early cooling cycles, the cost func-
tion in a much faster way than algorithm (i). As expected, including gradient information in the generation of
trial designs allowed to increase the cost reduction rate. However, the 1-directional search recovered the gap
in convergence speed within about 55 cooling cycles in the Rosembrock�s valley problem and within about 25
cooling cycles in the 10bar truss case. This behavior is consistent with the argument that perturbing all de-
sign variables could not keep the current good searching direction also in the subsequent iterations. Con-
versely, the 1-directional search has a better chance to recover the good searching direction and approach
the optimum point systematically. In addition, perturbing all design variables does not give any information
on the effect of each single variable on constraint violation. Since, the sharp reduction in cost initially seen in
the case of multi-directional algorithms resulted in approaching constraint boundaries too quickly, the
search direction defined by the multi-directional random generation was certainly not conservative when
the number of active constraints increased significantly within the current cooling cycle.

Fig. A.3 shows the optimized designs found by the different annealing strategies and by Matlab in the
Banana problem. The standard deviation of the optimized values of design variables is also reported in
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Fig. A.2. Convergence curves obtained in preliminary tests for different annealing strategies.
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the figure. It is apparent that the SQP optimizer used by Matlab found the best design. This was because the
cost function of the Rosenbrock�s problem includes many quadratic terms (in fashion of single contributes
or of product factors). The 1-directional annealing strategy found the closest design to that obtained by
Matlab but the last 10 design variables were up to 0.4% larger than the optimum target value of 1. The
multi-directional search strategies were not very effective and the error on design variables was up to 1%.

In the 10bar truss case, the fact that the cost function is linear made the SQP routine implemented in
Matlab miss the 2295.6kg global optimum and to converge to the 2302.7kg local minimum. Conversely,
the annealing algorithms (i) and (iii) (i.e., ‘‘1-directional’’ and ‘‘multi-directional with gradients’’) were able
to find better designs than Matlab. However, algorithm (ii) failed and converged to a design about 101kg
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heavier than the 2295.6kg global optimum. This failure along with the fact that, in the Banana problem, the
convergence speed of algorithm (ii) was lower than that of algorithm (iii) suggested us not to use multi-
directional annealing search without including gradient information.

In view of the results presented and of the discussion developed in this appendix, it is correct to choose
the 1-directional perturbation mechanism as basis for comparison with ISA. In addition, an optimization
code based on simulated annealing should combine the ability of the multi-directional search to reduce
sharply the cost function in the early optimization cycle and the ability of the 1-directional search to recover
the good search direction as the different cooling cycles progress. Therefore, the combination of global and
local annealing done by ISA appears certainly well motivated.
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